$$ \newcommand{\floor}[1]{\left\lfloor #1 \right\rfloor} \newcommand{\ceil}[1]{\left\lceil #1 \right\rceil} \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\C}{\mathbb{C}} \renewcommand{\L}{\mathcal{L}} \newcommand{\x}{\times} \newcommand{\contra}{\scalebox{1.5}{$\lightning$}} \newcommand{\inner}[2]{\left\langle #1 , #2 \right\rangle} \newcommand{\st}{\text{ such that }} \newcommand{\for}{\text{ for }} \newcommand{\Setcond}[2]{ \left\{\, #1 \mid #2 \, \right\}} \newcommand{\setcond}[2]{\Setcond{#1}{#2}} \newcommand{\seq}[1]{ \left\langle #1 \right\rangle} \newcommand{\Set}[1]{ \left\{ #1 \right\}} \newcommand{\set}[1]{ \set{#1} } \newcommand{\sgn}{\text{sign}} \newcommand{\halfline}{\vspace{0.5em}} \newcommand{\diag}{\text{diag}} \newcommand{\legn}[2]{\left(\frac{#1}{#2}\right)} \newcommand{\ord}{\text{ord}} \newcommand{\di}{\mathrel{|}} \newcommand{\gen}[1] \newcommand{\irr}{\mathrm{irr }} \renewcommand{\deg}{\mathrm{deg }} \newcommand{\nsgeq}{\trianglelefteq} \newcommand{\nsg}{\triangleleft} \newcommand{\argmin}{\mathrm{argmin}} \newcommand{\argmax}{\mathrm{argmax}} \newcommand{\minimize}{\mathrm{minimize}} \newcommand{\maximize}{\mathrm{maximize}} \newcommand{\subto}{\mathrm{subject\ to}} \newcommand{\DKL}[2]{D_{\mathrm{KL}}\left(#1 \di\di #2\right)} \newcommand{\ReLU}{\mathrm{ReLU}} \newcommand{\E}{\mathsf{E}} \newcommand{\V}{\mathsf{Var}} \newcommand{\Corr}{\mathsf{Corr}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\covariance}[1]{\Cov\left(#1\right)} \newcommand{\variance}[1]{\V\left[#1\right]} \newcommand{\variancewith}[1]{\V\left[#1\right]} \newcommand{\expect}[1]{\E\left[#1\right]} \newcommand{\expectwith}[2]{\E_{#1}\left[#2\right]} \renewcommand{\P}{\mathsf{P}} \newcommand{\uniform}[2]{\mathrm{Uniform}\left(#1 \dots #2\right)} \newcommand{\gdist}[2]{\mathcal{N}\left(#1, #2\right)} \DeclarePairedDelimiter{\norm}{\lVert}{\rVert} $$ \everymath{\displaystyle}

Probability and Statistics

Mathematical statistics, Probability theory, etc

Total views

ML/DL๊ณผ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ณต๋ถ€ํ•˜๋ฉด์„œ, ํ™•๋ฅ ๋ก ๊ณผ ํ†ต๊ณ„ํ•™์— ๋Œ€ํ•œ ๋ฒ ์ด์Šค๊ฐ€ ๋ถ€์กฑํ•จ์„ ๋А๋‚€ ์ ์ด ๊ฝค ๋งŽ์•˜์Šต๋‹ˆ๋‹ค. ๊ทธ๋ž˜์„œ ์–ธ์  ๊ฐ€ ํ•œ๋ฒˆ ๋ฐฉํ•™๋•Œ ์ด๋Ÿฐ ๋ถ€๋ถ„๋“ค์„ ๊ณต๋ถ€ํ•˜๋Š” ๊ธฐํšŒ๋ฅผ ์‚ผ์œผ๋ ค๊ณ  ํ•˜๋Š”๋ฐ, ์™„์ „ ๋…ํ•™์„ ํ•˜๋‹ค๋ณด๋‹ˆ motivation์ด ๋„ˆ๋ฌด ๋–จ์–ด์ ธ์„œ ์—ฌ๊ธฐ์— ์ •๋ฆฌํ•˜๋ฉด์„œ ๊ณต๋ถ€ํ•˜๋ ค ํ•ฉ๋‹ˆ๋‹ค.

Mathematical Statistics

๊ณต๋ถ€ํ•˜๋Š” ์ฑ…์€ ์„œ์šธ๋Œ€ํ•™๊ต ํ†ต๊ณ„ํ•™๊ณผ ์ˆ˜๋ฆฌํ†ต๊ณ„ ๊ณผ๋ชฉ์˜ ๊ต๊ณผ์„œ์ธ โ€œ์ˆ˜๋ฆฌํ†ต๊ณ„ํ•™(๊น€์šฐ์ฒ  ๊ต์ˆ˜๋‹˜ ์ €)โ€ ์ž…๋‹ˆ๋‹ค.

Topic Book Chapter
Definition of Probability, Conditional Probability 1.1 - 1.2
Random variables, Expectations 1.3 - 1.5
Useful Inequalities 1.6
Bivariate random variables 2.1 - 2.2
Bivariate Conditional distributions 2.3 - 2.4
Multivariate distributions 2.5
Discrete probability distributions 3.1 - 3.3
Poisson distribution 3.4
Continuous probability distributions 3.5
Normal distribution 3.6, 4.4
Sample distributions 4.1 - 4.2
Order statistics 4.3
Central Limit Theorem 5.1
Limit distribution 5.2 - 5.3
Method of Moments Estimation 6.1
Maximum Likelihood Estimation 6.2 - 6.3
Maximum Likelihood Estimation : Properties 6.5
Least Square Estimation 6.5