$$\newcommand{\floor}[1]{\left\lfloor #1 \right\rfloor} \newcommand{\ceil}[1]{\left\lceil #1 \right\rceil} \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\C}{\mathbb{C}} \renewcommand{\L}{\mathcal{L}} \newcommand{\x}{\times} \newcommand{\contra}{\scalebox{1.5}{\lightning}} \newcommand{\inner}[2]{\left\langle #1 , #2 \right\rangle} \newcommand{\st}{\text{ such that }} \newcommand{\for}{\text{ for }} \newcommand{\Setcond}[2]{ \left\{\, #1 \mid #2 \, \right\}} \newcommand{\setcond}[2]{\Setcond{#1}{#2}} \newcommand{\seq}[1]{ \left\langle #1 \right\rangle} \newcommand{\Set}[1]{ \left\{ #1 \right\}} \newcommand{\set}[1]{ \set{#1} } \newcommand{\sgn}{\text{sign}} \newcommand{\halfline}{\vspace{0.5em}} \newcommand{\diag}{\text{diag}} \newcommand{\legn}[2]{\left(\frac{#1}{#2}\right)} \newcommand{\ord}{\text{ord}} \newcommand{\di}{\mathrel{|}} \newcommand{\gen}[1] \newcommand{\irr}{\mathrm{irr }} \renewcommand{\deg}{\mathrm{deg }} \newcommand{\nsgeq}{\trianglelefteq} \newcommand{\nsg}{\triangleleft} \newcommand{\argmin}{\mathrm{argmin}} \newcommand{\argmax}{\mathrm{argmax}} \newcommand{\minimize}{\mathrm{minimize}} \newcommand{\maximize}{\mathrm{maximize}} \newcommand{\subto}{\mathrm{subject\ to}} \newcommand{\DKL}[2]{D_{\mathrm{KL}}\left(#1 \di\di #2\right)} \newcommand{\ReLU}{\mathrm{ReLU}} \newcommand{\E}{\mathsf{E}} \newcommand{\V}{\mathsf{Var}} \newcommand{\Corr}{\mathsf{Corr}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\covariance}[1]{\Cov\left(#1\right)} \newcommand{\variance}[1]{\V\left[#1\right]} \newcommand{\variancewith}[1]{\V\left[#1\right]} \newcommand{\expect}[1]{\E\left[#1\right]} \newcommand{\expectwith}[2]{\E_{#1}\left[#2\right]} \renewcommand{\P}{\mathsf{P}} \newcommand{\uniform}[2]{\mathrm{Uniform}\left(#1 \dots #2\right)} \newcommand{\gdist}[2]{\mathcal{N}\left(#1, #2\right)} \DeclarePairedDelimiter{\norm}{\lVert}{\rVert}$$ \everymath{\displaystyle}

Total views

Thumbnail image source : Tensorflow Image segmentation1

Pre-DL Image segmentation methods

๋ฅ๋ฌ๋์ด ๋ณธ๊ฒฉํ๋๊ธฐ ์ด์ ์๋ ์ด๋ค ๋ฐฉ๋ฒ๋ค์ด image segmentation์ ์ฌ์ฉ๋์๋์ง ๊ณต๋ถํ์ต๋๋ค.

Deep Learning methods

Github Link ์์ ์ฝ๋๋ฅผ ๋ชจ๋ ํ์ธํ  ์ ์์ต๋๋ค.

๊ฐ๋ณ๊ฒ ๊ฐ ๋ชจ๋ธ๋ค์ ๋น๊ตํ  ๊ฒ์ด๋ฏ๋ก, ์์ ๋ฐ์ดํฐ์์ ์จ๋ณด๋ ค๊ณ  ํฉ๋๋ค. Graz Univ์์ ์ ๊ณตํ๋ ๋๋ก  ํญ๊ณต ์ฌ์ง ๋ฐ์ดํฐ์ ์ ์ด์ฉํด ๋ณด๊ฒ ์ต๋๋ค. ๋จผ์  ๋ฐ์ดํฐ๋ฅผ ๋ก๋ฉํ  ์ค๋น๋ฅผ ํ๊ณ , ๊ธฐ๋ณธ ์ธํ๋ค์ ํฉ๋๋ค. ๋ชจ๋ธ์ ๊ตฌํํ๊ณ  ๋์ ๋ฐ์ดํฐ๋ฅผ ๋ก๋ฉํด์ ํ์คํธํ  ์ ์๋๋ก..

๋ฐ์ดํฐ๊ฐ ๋๋ฌด ํฌ๊ณ , ๋๋ฌด ์ ์ด์ ๋ฌธ์ ๊ฐ ๋ง์ด ๋ฐ์ํ๊ธฐ ๋๋ฌธ์, ๋ฐ์ดํฐ๋ฅผ PASCALVOC 2012๋ฅผ ์ฐ๊ธฐ๋ก ๋ฐ๊ฟจ์ต๋๋ค.

Prep์ด ์ ๋๋ก ๋์๋์ง ํ์ธํ๊ณ  ์ถ์ต๋๋ค. 1-Layer CNN์๋ค๊ฐ ์ด๋ฏธ์ง๋ฅผ ๋จน์ด๋ฉด ์กฐ๊ธ์ด๋ผ๋ Nontrivialํ ๋ญ๊ฐ๋ฅผ ๋ฐฐ์ธ ์ ์์๊น์?

Fully Convolutional Network (FCN) ์ ๊ณต๋ถํ๊ณ  ๊ตฌํํฉ๋๋ค.

U-Net์ ๊ณต๋ถํ๊ณ  ๊ตฌํํฉ๋๋ค.

• [U-Net ์ ๋ฆฌ]
• [U-Net ๊ตฌํ]

1. Ironically, this project will use pytorch.ย โฉ