Back to : deep-learning-study
Contents

ImageNet Challenge๋ฅผ ๋”ฐ๋ผ๊ฐ€๋ฉฐ, CNN์˜ ๊ฐ€์žฅ ํฐ ํƒœ์Šคํฌ์ค‘ ํ•˜๋‚˜์˜€๋˜ ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜์— ์‚ฌ์šฉ๋˜๋Š” ๋ชจ๋ธ๋“ค์˜ ๊ตฌํ˜„์„ ๊ณต๋ถ€ํ•ฉ๋‹ˆ๋‹ค.

์ฝ”๋“œ๋Š” Github repository ์— ์—…๋กœ๋“œ๋ฉ๋‹ˆ๋‹ค.

Data

CIFAR10์€ 32 x 32์˜ ๋งค์šฐ ์ž‘์€ ์ด๋ฏธ์ง€ 6๋งŒ๊ฐœ๋กœ ๊ตฌ์„ฑ๋œ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ, ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜์—์„œ MNIST๋ณด๋‹ค๋Š” ์–ด๋ ต๊ณ  Imagenet๋ณด๋‹ค๋Š” ์‰ฌ์šด, ์ ๋‹นํ•œ ์—ฐ์Šต์šฉ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ฐ ์ด๋ฏธ์ง€๋Š” 10๊ฐœ ์ค‘ ํ•˜๋‚˜์˜ ํด๋ž˜์Šค๋กœ ๋ผ๋ฒจ๋ง์ด ๋˜์–ด์žˆ์Šต๋‹ˆ๋‹ค.

์—ฌ๊ธฐ์„œ๋Š” 5๋งŒ๊ฐœ๋ฅผ training์—, 1๋งŒ๊ฐœ๋ฅผ test์— ์‚ฌ์šฉํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.

Data augmentation์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.

  • ๊ฐ€๋กœ์„ธ๋กœ 4๋งŒํผ์˜ ํŒจ๋”ฉ
  • Random crop (32 by 32). Padding๋œ ๋‹ค์Œ ์ž๋ฅด๋Š”๊ฑฐ๋ผ ์ด๋ฏธ์ง€ ์œ„์น˜๊ฐ€ ์ •๊ฐ€์šด๋ฐ๊ฐ€ ์•„๋‹ˆ๊ฒŒ ๋งŒ๋“œ๋Š” ํšจ๊ณผ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
  • Random flip
  • Normalization (Imagenet weight)

Models

Model Name Post Link Result
LeNet - 66.77% (50 epoch)
AlexNet AlexNet : Explained
AlexNet on Cifar10
85.03% (50 epoch)